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We investigate the solutions and first passage time distribution for an anomalous diffusion process governed
by a generalized non-Markovian Fokker-Planck equation. In our analysis, we also consider the presence of
external forces and absorbent �source� terms. In addition, we show that a rich class of diffusive processes,
including normal and anomalous ones, can be obtained from the solutions found here.
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I. INTRODUCTION

A large class of physical phenomena related to relaxation
processes in complex systems may be usually described by
the non-Markovian Fokker-Plack equation �1�

�

�t
��r,t� = �

0

t

dt̄K�t − t̄�L���r, t̄�� , �1�

where K�t� is a kernel which takes a memory effect into
account and L�¯� is a linear operator, acting on the spatial
variable, which we considered, without loss of generality,
given by

L��� � D�˜2� − � · �F̄�r��� + ��r�� , �2�

where D is a diffusion coefficient, �˜2

�r1−N�r�rN−1−��r�r−�
¯ �� ��=�=0 recovers the usual La-

placian operator for the N-dimensional case within radial

symmetry�, F̄�r�=F�r�r̂ represents an external force applied
to the system, and ��r� is an absorbent �source� term related
to a reaction diffusion process. Particular cases of this opera-
tor have been used in the analysis of a rich variety of sce-
narios such as diffusion on fractals �2–4�, systems with finite
boundary conditions �5�, the first passage time related to
anomalous diffusion processes �6,7�, fast electrons in a hot
plasma in the presence of a electric field �8�, and turbulence
�9,10�. The reaction term present in Eq. �2� may be applied
to several scenarios such as catalytic processes in regular,
heterogeneous, or disordered systems �11� and in irreversible
first-order reactions of the transported substance whose rate
of removal equals �̄� �12�. Equation �1� may also be used to
investigate subdiffusion-limited reactions �13�, and by suit-
able changes it may correspond to a Schrödinger-like
equation for K�t����t� with mass depending on the position,
similarly to the one investigated in �14�. Equation �1� recov-
ers the usual N-dimensional diffusion equation within
radial symmetry without memory effect for K�t�=��t�
and �=�=0. The fractional diffusion equation used to inves-
tigate physical phenomena related to anomalous diffusion
�15–20� may be obtained from Eq. �1�. By employing a
suitable kernel with �=0 and by choosing the kernels
K�t��	d�p���t�−1, it is possible to study slow processes
lacking scaling �21�. Also, by using Eq. �1�, a well-known
limitation of the description of diffusion processes with the
diffusion equation—i.e., the infinite velocity of information

propagation inherent to a parabolic equation—can be
avoided by choosing a suitable kernel �22�.

From the previous discussion, we note the importance of
this kind of equation not only due to the broad range of
scenarios which can be successfully described, but also due
to the growing interest in the feasibility of covering new
situations. Thus, the present work intends to establish some
classes of solutions for this non-Markovian Fokker-Planck
equation. In connection with these solutions, we investigate
the first passage time distribution �FPTD�, since only in few
cases does one have an explicit analytical expression for the
FPTD distribution as is pointed out in �23�. Notice that
knowledge of the FPT distribution F�t� is essential to obtain
the mean first passage time �MFPT�. Examples of the MFPT
are the escape time from a random potential, intervals be-
tween neural spikes �24�, stochastic resonance �25�, and fa-
tigue failure �26�.

The plan of this work is to investigate, in Sec. II, the
solutions of Eq. �1�. We start by considering the kernel
K�t�=K0��t�+K1t�−2 /	��−1�, the external force F�r�
=K
 /r1+
 �
=�+��, and the absorbent term ��r�=−� /r�

��=2+�+��. Afterwards, we discuss the first passage time
distribution related to this process by employing K1=0 and
�=0. In this context, we first study situations characterized
by the boundary conditions defined in a finite interval and
after we extend our analysis to a semi-infinite interval. In
particular, for the case characterized by a semi-infinite inter-
val we employ, for simplicity, K0=0. Subsequently, we con-
sider the external force F�r�=−kr+K
 /r1+
 and the absor-
bent �source� term ��r�=−�1r�−�2 /r�. Finally, we present
our conclusions in Sec. III.

II. NON-MARKOVIAN FOKKER-PLANCK EQUATION

Let us start our discussion by considering Eq. �1� in the
presence of the external force F�r�=K
 /r1+
 �
=�+��, sub-
jected to the boundary condition ��a , t�=0 and the presence
of the absorbent �source� term ��r�=−� /r� ��=2+�+��.
Note that the potential related to this external force extends
the logarithmic potential used, for instance, to establish a
connection between the fractal diffusion coefficient and the
generalized mobility �27�. Now, we employ the Laplace
transform to solve Eq. �1� subjected to these conditions.
Thus, by taking the Laplace transform and by using the
Green’s function approach �28�, we obtain
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��r,s� = �
0

a

d��N−1−�−K
/D�̃���G�r,�,s� ,

G�r,�,s� =


a 

n=1

�
��r��+�+K
/D−N�/2

�Jp+1��̄na/2��2

�Jp��̄n�/2�Jp��̄nr/2��n�s� ,

�n�s� =
1

s + K�s�D�n
2 , �3�

in Laplace space, where =2+�+�, p= ��N−+�

+K
 /D�2+4� /D�1/2 /, �̄n=2�n /, Jp�x� is the Bessel func-

tion, �n �eigenvalue� is obtained from Jp��̄na/2�=0 and the
initial condition is given by ��r ,0�= �̃�r�. To obtain the in-
verse of Laplace transform of Eq. �3� is a hard task if we
consider a general kernel K�s�. However, for some cases
such as K�s�=K0 and K�s�=K1s1−�, it is possible to obtain
the inverse of the Laplace transform. In particular, these
cases play an important role in the analysis of the relaxation
process of a complex system. In fact, the first case corre-
sponds to the usual relaxation—i.e., an exponential
behavior—and the second one is related to an anomalous
relaxation �15�, whose behavior is given in terms of the
Mittag-Leffler function �E��x�=
n=0

� xn /	�1+�n��. In order
to unify these cases, we consider K�s�=K0+K1s1−�, which
leads us to

�n�t� = 

k=0

�
1

k!
�− K0D�n

2t�kE�,1+�1−��k
�k� �− �n

2K1Dt�� , �4�

with E�,�
�k� �x��
n=0

� �n+k� !xn / �n !	(��n+k�+�)�. By taking
K1=0 in Eq. �4�, we obtain the usual exponential behavior—

i.e., �n�t�=e−K0D�n
2t—and for K0=0, we have �n�t�

=E��−K1D�n
2t��. From these particular cases, we verify that

the kernel K�s�, as we mentioned above, corresponds to the
mixing of the usual relaxation governed by exponential be-
havior and the anomalous relaxation governed by a Mittag-
Leffler function. Thus, Eq. �4� presents two diffusive re-
gimes. Similar situations characterized by two regimes may
appear, for instance, in systems with long-ranged interaction
Hamiltonians �29,30� and in active intracellular transport
�31�. By using the definition present in �32�, we may obtain
the first passage time related to this process by considering,
for simplicity, K1=0 and �=0. The last requirement is used
to fix the number of particles present in the system. After
some calculations, it is possible to show that

F��,t� =
2K0D

a �
0

a

d��N−1−�−K
/D�̃���

n=1

�
��+�+K
/D−N�/2

�Jp+1��̄na/2��2

�Jp��̄n�/2��n
2e−K0D�n

2t� 2

2�n
2	�p�

��n


p

−
a�1−p�/2

2�n
Jp−1�2�n


a/2� , �5�

with ��+K
 /D+N �see Fig. 1�. In particular, this result

found for the first passage time distribution extends the re-
sults obtained in �7�.

We may extend the above results found for Eq. �1� by
considering a→� for the case characterized, for simplicity,
by K�t�=K1t�−2 /	��−1�, with K1=1. This choice of kernel
leads us to a fractional diffusion like equation which may be
useful to investigate several situations such as axial transport
of granular materials �33�, random compressible flows �34�,
transport of a substance in a solvent from one vessel to an-
other across a thin membrane �35�, and asymmetry of DNA
translocation �36�. To obtain this extension, it is useful to use

��r,t� = �
0

�

dkC�k,t���r,k�,

��r,k� = r�+�+K
/D−N�/2Jp� 2


kr/2 , �6�

where C�k , t� is the kernel to be found. By substituting Eq.
�6� into Eq. �1� and taking the previous external force and
absorbent terms into account, we obtain

d

dt
C�k,t� = − Dk2�

0

t

dt̃K�t − t̃�C�k, t̃� . �7�

By solving Eq. �7�, we found C�k , t�=C�k ,0�E��−k2Dt��,
where C�k ,0� is determined by the initial condition. By using
the initial condition ��r ,0�= �̃�r�, we verify that

C�k,0� =
2k


�

0

�

d��N−1−�−K
/D�̃������,k� . �8�

Thus, the solution is given by

FIG. 1. Behavior of F�� , t� versus t for a typical values of � and
K
 by considering, for simplicity, �=1.0, a=3.0, N=1.0, �=2,
K0=3, �̃�r�=r1+�+K
/D−N��r−��, and D=1.0.
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��r,t� = �
0

�

d��N−1−�−K
/D�̃���G�r,�,t�,

G�r,�,t� =
2


�

0

�

dkk���,k���r,k�E��− k2Dt�� . �9�

Notice that if we have used K�t�=K0��t�+K1t�−2 /	��−1�,
the main change produced in Eq. �9� would be the presence
of the function ��t�, defined by Eq. �4�, instead of the
Mittag-Leffler function. From the above equation, two inter-
esting cases emerge when we consider p=1/2 with an arbi-
trary � and �=1 with an arbitrary p. For the first case—i.e.,
p=1/2 with � arbitrary—the Green function can be reduced
to

G�r,�,t� =
�r���/2+�+K
/D−N�/2

�4Dt�

� �H11
10�� 2�r/2 − �/2�

�Dt� �
�0,1�

�1−�/2,�/2��
− H11

10�� 2�r/2 + �/2�

�Dt� �
�0,1�

�1−�/2,�/2�� , �10�

where Hpq
mn�x��b1,B1�,. . .,�bq,Bq�

�a1,A1�,. . .,�ap,Ap�� is the Fox H function �37�. For

the second case, �=1 with p arbitrary, we can simplify the
Green function present in Eq. �9� by using the identity �38�
	0

�dkkJ
��̃k�J
��˜k�e−ã2k2
=e−��˜2+�̃2�/�4ã2�I
(�̃�˜ / �2ã2�) / �2ã2�in

order to obtain

G�r,�,t� = ��r��+�+K
/D−N�/2e−�r+��/2Dt

Dt
Ip�2��r�/2

2Dt � , �11�

where I
�x� is a modified Bessel function. The asymptotic
behavior for the second moment associated with this process
is �r2�� t2/ for long time, where �2, =2, or �2 corre-
sponds, respectively, to a subdiffusive, normal, or superdif-
fusive process. In particular, for this case the first passage
time distribution is given by F�� , t�=�−Ne−�/Dt2

/ �t	�1
− �̃��D2t�1−�̃� where �̃= �N+K
 /D+�� /, �=0, and
�N+K
 /D+� �see Fig. 2�. Note that this result for the
first passage time distribution recovers the result present in
�7� for N=1, �=0, and K
=0.

Now, let us extend the external force and the absorbent
term worked out above by incorporating a linear term in the
external force and the positive power-law term in the absor-
bent term. More precisely, we consider the external force
F�r�=−kr+K
 /r1+
 and the source term ��r�=−�1r�

−�2 /r�. In order to obtain the solution for Eq. �1� taking
these conditions into account, we expand ��r , t� in terms of

the eigenfunctions; i.e., we employ ��r , t�=
n�n�r��˜n�t�
with �n�r� �eigenfunction� determined by the spatial
equation

D
rN−1

d

dr
�rN−1�r−� d

dr
�r−��n�r�� − F�r��n�r��� + ��r��n�r�

= − �̄n�n�r� �12�

and �˜n�t� obtained from the time equation d�˜n�t� /dt=

−��̄n /	��−1�� 	0
t dt̃�t− t̃��−2 �˜n�t̃�. Thus, after some calcula-

tion, it is possible to show that

��r,t� = �
0

�

d��N−1−�−K
/D�̃���G�r,�,t�,G�r,�,t�

= � k̄

D
�̄+1

�r���+�e−�k/2D��r−��e−�k̄/2D��r+��

� 

n=0

�
	�n + 1�

	�1 + �̄ + n�
Ln

��̄�� k̄�

DLn
��̄�� k̄r

DE��− �̄nt�� ,

�13�

with k̄=�k2+4D�1, �= �K
 /D+2+�−N+�̄� /2, �̄

=�4D�2+ �K
+D�N−2−���2 / �D�, where Ln
��̄��x� are asso-

ciated Laguerre polynomials, and �̄n=k̄��1+ �̄� /2+n

−k�K
+D�N+��� / �2Dk̄��. This result extends the result
found in �16� for a linear external force, and for �=1,
N=1, and �=�=0, we recover the solution for the Rayleigh
process presented in �32�. Another interesting feature con-
cerning this case is that for long time, in the absence of
absorbent �source� terms, the usual stationary solution may
be recovered and is given by ��r��rK
/D+�e−kr/�D�. This
feature is in agreement with the results previously reported in
�16,39�.

III. SUMMARY AND CONCLUSIONS

We have worked a non-Markovian Fokker-Planck equa-
tion by considering radial symmetry. We have first analyzed

FIG. 2. Behavior of F�� , t� versus t for a typical values of , N,
and K
 by considering, for simplicity, �=1.0, �=1, �̃�r�
=r1+�+K
/D−N��r−��, and D=1.0.
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the case characterized by the presence of the external force
F�r�=K
 /r1+
 �
=�+��, taking the absorbent term ��r�=
−� /r� ��=2+�+�� into account, by considering a finite in-
terval. We have also obtained the first passage time distribu-
tion for the K1=0 and �=0. After, we have extended the
results obtained for a semi-infinite interval. In particular, in
this context we considered two particular cases from Eq. �9�.
Following, we have investigated the solutions to the external
force F�r�=−kr+K
 /r1+
 and the absorbent �source� term
��r�=−�1r�−�2 /r�. For these cases, we have obtained an
exact solution given in terms of the Fox H function, Bessel
functions, or the associated Laguerre polynomial and Mittag-
Leffler function. The presence of these functions—the Fox H
function and the Mittag-Leffler function—is due to the frac-
tional derivative present in the diffusion equation. In fact, the
presence of a fractional derivative in the diffusion equation
changes the waiting time probability density function. There-

fore, we have an anomalous relaxation for this case that dif-
fers from the usual case characterized by an exponential re-
laxation. We have pointed out that the stationary solution for
Eq. �13� is equal to the usual one in the absence of the
absorbent �source� term. In particular, this result is in agree-
ment with the results presented in �39� concerning the frac-
tional diffusion equations and thermodynamics. We have ex-
tended the results presented in �4� for a fractional diffusion
equation, the Rayleigh process �32�, and the asymptotic re-
sults reported in �16� for homogeneous and isotropic random
walk models. Finally, we expect that the results presented
here will be useful to discuss situations where anomalous
diffusion is present.
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